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ABSTRACT

We consider singular optimal control problems consisting of a state

equation
i = Ax + Bu
for vectors x and scalars u and a cost functional
J = %J;(X‘Qx + Ezuz)dt

to be minimized for |u| <m and € = 0. By considering the problem as € -+ 0,
singular perturbation concepts can be used to compute solutions consisting of
bang-bang controls followed by singular arcs. The procedure further develops a
numerical technique proposed by Jacobson, Gershwin, and Lele, as well as ad-

ditional analytic methods developed by other authors.

1. INTRODUCTION

A typical singular optimal contrcl problem consists of a state equation
(1.1) x=Ax+bu, O0<t<T<am
(subject to end conditions on the n-vector x) and a scalar cost functional

1 T
(1.2) I ﬂ x'Q X dt
0
which is to be minimized for a symmetric, positive semi-definite matrix Q

(i.e., Q> 0) and for a scalar control u which is restricted to lie withiq

the finite bounds

{ s

(1.3) -m< u<m

i i o
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The known theory of singular problems has recently been summarized in Bell and
Jacobson (1975), while research papers on the general problem and particular
applications abound in the current literature.
Jacobson and coworkers (cf. Jacobson and Speyer (1971) and Jacobson,
Gershwin, and Lele (1970)) converted such problems to nonsingular (though nearly

singular) problems by considering the perturbed cost

T
(1.4) J(E) = %{ (x'Qx + Ezuz)dt

0
for a sequence of positive € values tending toward zero. This device resulted
in considerable progress both for theoretical purposes and for numerical calcula-
tion. More recently, 0'Malley and Jameson (1975, 1976) and 0'Malley (1976) have
used an analogous method to analytically solve such singular control problems
with time-varying coefficients and vector controls, but without bounds on the
components of the control. Their results rely heavily on the asymptotic theory
for singularly perturbed boundary value problems for ordinary differential

equations (cf. Wasow (1965), Lions (1973), and 0‘'Malley (1974)). Applications

of such analyses in control have recently been surveyed by Kokotovic et al.
(1976). Bell and Jacobson (1975) stress the need and difficulty of developing 4
computational techniques for singular control problems and observe that the 3
best current schemes are the "€-method" of Jacobson et al. (1970) and gradient
techniques (cf., e.g., Pagurek and Woodside (1968), Sirisena (1974), and Edge
and Powers (1976)). We note that these €-methods are analogous to the arti-

ficial viscosity methods popular in computational fluid dynamics (cf. Richtmyer 3

and Morton (1967)). 1In addition, we note that Boggs (1976) has overcome some

difficulties with gradient techniques by using asymptotic methods.
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Jacobson et al., (1970) and 0'Malley and Jameson (1975) show that although
the optimal cost J(€) given in (1.4) converges uniformly as € - 0, the
limiting control generally ccnverges nonuniformly. Indeed, the control must
be expected to consist of bang-bang arcs and singular arcs (cf. Johnson and
Gibson (1963)) and convergence is necessarily nonuniform as € - 0 at switch
points. [In another context, we note that the natural sluggish transfer of
mechanical systems at switch points of bang-bang control could be modelled by

another singular perturbation device, viz. the introduction of a cost term

ITpZ(&(t))zdt for u small.] We also recall that Powers and McDanell (1971)

agd Edgar and Lapidus (1972) report practical success in using the €-method for
Saturn rocket guidance and chemical reactor problems. Practical difficulties
certainly remain, however. As € » 0, for example, Jacobson et al. (1970)

note that numerical instability manifests itself and they suggest a sufficiently
good approximation might result by reducing € to a small, but "still numerically
stable" value. Analogous difficulties have, of course, been common in the
numerical solution of boundary value problems for stiff ordinary differential
equations (cf. Willoughby (1974) or Aziz (1975)). Substantial progress has 8
been made on these problems by using singular perturbation ideas to develop
specially-tailored numerical methods (cf. Miranker (1973), Ferguson (1975),
Flaherty and 0'Malley (1977), and Kreiss and Nichols (19 )). We propose a
similar program to further study singular control problems. By combining 4
asymptotic and numerical ideas, improved methods will necessarily follow. | {

We cannot, of course, obliterate the unavoidable complicated behavior inherent

in these singular problems (cf.,e.g., Fuller (1963)). We observe that the

nearly singular problems are 1ikely to be of independent interest (cf. 0'Malley




and Jameson (1975)), though we shall not pursue that question here.

In their recent study of singular arc problems with unbounded controls,
Jameson and 0'Malley found considerably different behavior in a sequence of
cases. Case k, k=1, 2, ..., corresponds to the more familiar classification
of singular arcs of order k (cf. Robbins (1967) or Goh (1966)) and is defined

such that b'(A')JQA%b =0 for j=10,1, ..., k-2 and b'(A")K Tqak-

b> B,
A given problem need not fit into any such case (as when Q = 0) and for

vector cuntrols may lie between cases (when the last matrix is singular, but of
positive rank (cf. Anderson (1973)). Like much of the literature (cf. Wonham
and Johnson (1964), Sirisena (1968), and Anderson (1972)), our discussion will
mostly concern Case 1. For Case k problems, the singular arc solution for

an n-vector x and scalar u involves a control Taw for a dynamical system
of order n - k (cf. 0'Malley and Jameson (1976)). It is natural then to seek
a control u which switches k - 1 times between control bourds +m before
reaching the singular arc. It is easy to see that such a control will not
generally be optimal for k > 2, though we show that it is quite satisfactory
for certain examples. We must anticipate such difficulties, however, since
experts conjecture that infinite switching (as in the classical Fuller problem)
is generic for k > 2 (cf. Krener (1976)). We note that the nonsingular
problem with a small fixed value of € could have an optimal solution with a
finite number of switchings, while the Timiting singular problem involves infinite

switchings.

2. THWO FIRST ORDER SINGULAR ARC PROBLEMS

a. The simplest singular arc problem may be




with

2
5 %} x2(t)dt
0

Lto be minimized for |u| < m.

For m = », the optimal control features an initial negative delta function
impulse which drives the state immediately to zero with the optimal cost J* = 0.
To solve this problem by the €-method we consider the nonsingular problem

x = u, x(0)=1

with

e 22
3€) = 3 6¢(e) + Aie))at
0

to be minimized.

Its unique solution for m = o,

i
E
x(t,€) = (1 + eME (e t/E e—2/€e—(2—t)/€) i

WEE) = L1 & & WE) N HE | 2R (21 . g

has the asymptotic limit
x(t,€) ~ e t/E and u(t,€) ~ - ée—tle

for € -» O+. We note, in particular, that this limiting control behaves like

-6 at t =0 since

2
%j f(t)e <4t > £(0) as €+ 0.
0
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For bounded controls, |u| <m, the optimal control does the best it can (cf.

e.g., Sage (1968)), viz. for m > %

The integrated effect is the same, i.e., the singular arc solution x =u =20
is ultimately reached (see Figure 1). Indeed, the preceding results can be
recovered by letting m > «. For bounded m, the problem can be explicitly
solved by using the cost functional J(€) and seeking the asymptotic solution
as € > 0. For m=1, the limiting cost is exactly %— compared to Jacobson
et al. (1970)'s calculated values 0.1717 and 0.1617.

Slight modifications of this example can be easily handled, e.g., Rozonoer's

example

. & 5 S
X = U, X(O) = Ty X(2) = o IUI 5_], J —~2~J x dt
0

(cf. Pagurek and Woodside (1968)) and the vector control problem

e R

4
2 . . 1 2 2
X; = dugs fuyl <1, 1=1,2, J= ?JO(X] + x5)dt.

b. As a second example, consider the harmonic oscillator problem

(

Xy = Xps x](O) =0
iz =u, x2(0) = ]
(2.1) ﬁ with cost
9
o 2 2 2 2
J(€) = EJO(X] tx, t € u")dt
k and |u] < m.

For m =, the usual state-costate formulation (cf.,e.g., Athans and
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Falb (1965)) implies that the optimal control will be given by

(2.2) u = -p2/62
where the state and costate vectors x = (x],xz)‘ and p = (p],pz)‘ satisfy

Xy = Xoo x](O) = 0; Xp = U, xz(O) =]

1 ‘X]a p](s) = 0; P2 T ‘X2 7 p]a p2(5) = 0.

The asymptotic solution of the singularly perturbed two point beundary value
problem (2.2)-(2.3) can be readily obtained. It consists of an initial
boundary layer (endpoint region of nonuniform convergence) while the limiting
solution within (0,5) satisfies the Timiting problem

X

= X

10 = %200 07 ppp0 Pyp = Xype And ppg = -Kag - 0y

obtained when we set € = 0. Since = 0 and X20 = -P1p° we're left with a

p
20
linear system for X10 and P10 If we now use the boundary values X]O(O)

= x](O) = p]0(5) = P](S) = 0, we get the trivial singular arc solution

(2.4) X = 0.

10~ P10 = %20 T P20
Further calculations (cf. 0'Malley and Jameson (1975)) also show that the limiting
control has a negative delta function impulse at t = 0. We note that the limiting
solution for t > 0 wouldn't be trivial if x](O) # 0 and that introduction of
the € provides a more convenient method of finding the limiting singular arc
solution than the more familiar technique of differentiating the optimality con-

dition e 0 twice with respect to t (cf.,e.g., Robbins (1967)).
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The preceding solution wouldn't be appropriate for a finite control bound
m, because the impulse in the initial boundary layer would exceed this bound
Instead, standard maximum principle arguments (cf. Boltyanskii (1971)) show

that the continuous optimal control is determined by

U= - p2/€2 if |py| < me?

and

[u] = m otherwise.

Moreover, the state and costate vectors satisfy the canonical equations (2.3)
as before. Anticipating that the control initially saturates at its negative

bound, we might seek a solution

-m, stz t]
{2.5) u =
/€%, by <t <5

and determine tys if possible, so that saturation does not occur on (t],5)
while |p,| > e on (0.ty). Clearly,

(2.6) x(t) = - P2+ t, wy(t) = -mt + ]

for 0<t< t] while we must satisfy the singularly perturbed problem

&£ .
e ke L el
2: -
(2.7) Sikp % =Pus’ pihy) = i)

{ ﬁ] T P](S) =0

2

Lpz i -X2 a p]: pz(t]) = me s P2(5) =

for L < 5.
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The system (2.7) has eigenvalues +1/k(€), +k(€)/€, where k2(6)
= (1 + V1—4€2)/2. Thus, the solution of the two-point problem is of the

form
'x]1 (~1/K ) 1/k .}
x| |RE etk (@] -ty )k
(2.8) = Ae + Be
Py 1 1
# 5 7.8
n)  |€°¢ -€2/13
r_E/KZ 3\ ( ) {_elka
-k(t-t,)/€
£ elE ke L R P S Cat L
€23 23
€ c
\ / \

The five boundary conditions in (2.7) provide four linear equations for A, B,

C, and D and a nonlinear equation for t]. For 5 - t] >> €, the exponential

e is exponentially negligible, so we successively find
—2(5—t]) -(5-t])
A =~ -Be 5 D =~ 2Be p
"2(5"t1)

while t] must satisfy

-2(5-t,) mtf+2(m-1)t1-z
e a2

mE?-2(m+1)t]+2'

It follows that there is a unique root t] such that 0 < ty < %-— 1+ t .
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Indeed for m= 1, t] is very near the upper bound V2, so the optimal

control is approximately given by

']a 0it<l/i
(2.9) u=
(V2 - I)e-(t'/i), t > /2.

We solved problem (2.1) with € = 0 by our asymptotic technique, which is
discussed in Section 3, and found that our results (see Figure 2) qualitatively
agreed with the computed solution pictured in Jacobson et al. (1970). We
found a minimum cost of 0.379 compared to their value of 0.414. Anderson
(1972) solved this problem by a search technique, obtaining a switching time
of 1.414 with corresponding trajectory values of 0.4144 and -0.4136, com-

pared to our values of 1.414, 0.4144, and -0.4138, respectively.

3. A SYSTEMATIC APPROACH TO CASE ONE PROBLEMS

Let us now consider free endpoint problems where
(3.1) b'Qb > 0

for a prescribed initial state vector x(0). Since the vector b has rank one,

we can transform it to its row echelon form
B=m =[]
by a nonsingular matrix M. (Here, the zero is an (n - 1)-vector.) Setting

X = Mx

we get a transformed problem analogous to (1.1)-(1.2) with
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K=maml, §=m)'gw! > o,
B'Ub = b'QB > 0, and U = u.

Let us assume now that such transformations have already occurred so that

(3.2) b= {1

: and, using corresponding partitioning, write
4 .
3 A Pz 41 9

g £3.3) A= , Q= .
b a1 % N2 922

i P
X = , and p =
i %2 P2
i

where 215, @515 Qyps X; and py are (n - 1)-vectors and a,,, Gyys Xps

and p, are scalars with 9y > 0. The canonical equations then take the form

X1 = Appxp *agX,

g = Bypxy * agoXy ¥ U
(3.2) Pp = <Qu%Xy = Gyp%g = APy - 2Py

and

L) R B Bl

subject to the end conditions that x(0) 1is prescribed and p(T) = 0.

e

%
&
%
g‘
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With the control constraint |u| < m, the maximum principle implies that
the control is either saturated or u = —pz/ﬁz. Since the unconstrained problem
has an optimal control which is initially unbounded and then follows a singular
arc as € » 0, it is natural to seek a bounded control which is saturated on an
initial interval 0 < t < ty and unsaturated for t; <t < T. For such switching

solutions, we must satisfy the initial value problem

Xy = A]]x] tagp%os x](O) given
(3.5)

e i i e

5 = it .
Xo = agXy * ayx, tom, XZ(O) given
for Dt 5_t] and the singularly perturbed two-point problem

— + - o
G =it s il SRR

PR 2 Fyl -
2 = STanXy FCanx, - by xp(ty) = x,(t)

(3.6)
Py = “QuyXy - Qg% - APy - 3P P(T) =0

1 ' _—"2 .
Q3% = Gpp%p ~ @1pPy - APps pplty) = 4T, py(T) = 0

for t].i t < T where the switching time t is still unspecified. Besides
requiring continuity of the states, costates, and zontrol at ty, we must check thﬂ
the control remains saturated until 3 and unsaturated thereafter. One would i
expect that the sign of the initial impulse for the unconstrained problem would

generally predict which control bound would initially saturate.

Our previous experience with singular perturbation problems shows that the

asymptotic solution on t; <t < T will be of the form
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X](t,E) T Ezm] (T a(_') L Ezn](o ’e)

x](t,e)

s xz(t,E) = Xz(t,E) + EmZ(T,E) + an(o,E)

py(t,€) = Pq(t,€) + €%, (r.€) + €%g,(0,€)

2

2 2
Lpz(tse) = £ Pz(t:e) + € fz(Tse) + € 92(0’6)

where the functions of
t=(t- 1)/ or o= (T-t)e

tend to zero as that "stretched variable" tends to infinity (cf. 0'Malley and
Jameson (1975), noting that we need Py = 0(62)). Within (t],T), the solution

will be asymptotically represented by the outer solution

2

which has a power series expansion in €. 1Its leading term (XIO’XZO’PIO’EZPZO)

will 1lie along a singular arc of order one. We note that the initial boundary
Tayer term f2(1,0) allows the nonuniform convergence of the control u = -p2/€2
as € »~ 0 at the switching point t; from +m to -on(t;), i.e., the

jump from its constrained value to its limiting value along the singular arc.
Analogously, the terminal boundary layer term gz(o,O) allows a jump in

p?_/e2 from the singular arc value PZO(T') to the terminal value zero. Explicit
calculation of the boundary layer terms will not be required.

Since (3.8) must satisfy (3.6), the limiting outer solution will necessarily

satisfy the reduced problem




(X

10~ M1tio F 2312%00 X0lty) = x(ty)

X

(3.9) 20 = 221%10 * 222%50 ~ Pagr Xaolty) = xp(t)
P10 = "U1%10 ~ %12%20 - MaPror ProlT) = 0
0= ~Grakva ~ faptog =~ #1210

for t] < t<T. We can solve immediately for X20 and on as functions of

X]0 and P]0 (since Ayp # 0). This leaves us with the linear two-point problem

Xj0 = AXyg = SPige Xqp(ty) = x(ty)
(3.10)
P1o =~ - A'Pyg PylT) = 0
for A=A,y - 2 ~la: Q = Q. - “har. 5 B, and % = o P 0
1 - 1292292 1 -tz et = v

As usual, it is convenient to solve this standard regulator problem by setting

(3.11) Piolt) = K(£)X;q(t)

where the (n - 1) x (n - 1) matrix K satisfies the Riccati differential

equation
(3.12) K+KA+A'K+0Q =KSK, K(T) = 0.

Standard arguments (cf.,e.g., Athans and Falb) guarantee the existence of a
unique symmetric solution K > 0 for all t < T. Thus, X]0 satisfies the

initial value problem
(313} Xi0 = (A - SK)X]O, X]O(t]) = x](t])

while




=1 "'] ] ] - sl
(3.14) Xo0 = ~950(a75 + 215K0K 00 Yoplty) = xp(t]).

The initial values x](t;) and xz(t{) must be determined by integrating the
saturated control problem (3.5) on [O,t]] and determining the switching time

t] by solving the nonlinear scalar equation

(3.15) xp(t]) = ~azp(ay, + a]k(ty)x(£]).

For certain simple problems (1ike our preceding examples), t] can be explicitly
determined. In general, however, one must attempt to solve (3.15) for its least
positive root ty numerically.

To check that our solution candidate remains saturated on 0 < t g_t], we

integrate the linear system

. s & -

Pr = -AnPr ~ 1Pz - Qupxp - Wi Pylty) = Prgltyd = kit dx (1))
(3.16)

Pp = =81oPy = 3P - Gpp%) - Gpp%ps Pplty) =
backwards from t], insisting that Py #0 on 0<tc«< t] (the nonhomogeneous

terms are known, since X and Xo follow from (3.5)). Likewise, we must be

sure that Py remains unsaturated for t > t], i.e.,

(3.17) |P20| = laéjxlo * 622)(20 b X20| b i

for ty < tc< T

Our procedure then shows us how to produce candidates for the optimal
solution of Case 1 problems. Examples can surely be found (cf. next secticn)
where the troublesome possibilities mentioned above eliminata some potential

solution candidates, For other problems, it produces suboptimal controls which
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may still be of value. Occasionally, we can be sure that a computed solution

is optimal. An example, on an infinite time interval, is

i

Xq = Xo * U, x1(0) =0

]

Xy = -U, X,(0) = -0.5, Ju] <1

T
L = %joxﬁdt with x](T) = x2(T) =0 for T free

(cf. Johnson and Gibson (1963)). We should note how effective our method is in
selecting the singular arc solution and that it relates to the popular technique

of synthesizing a control by integrating backwards from terminal time.

Algorithm

We have used the above asymptotic analysis to construct the following algo-
rithm to find numerical solutions of Case 1 problems.

1. Solve the Riccati differential equation (3.12) backwards from t =T
to t = 0. [We used Gear's code (1971) for all of our numerical inte-
grations; however, any other good code would have sufficed.]

2. TDecide which way the control bound will initially saturate and select
an initial guess for the switching time t,.

3. Integrate equations (3.5) from t = 0 to the latest guess for the switching
time. We repeat this step until equation (3.15) is satisfied to a suf-
ficient degree of accuracy. Ve generate successive guesses for t]
using a Newton-like procedure due to Brown (1969). If a negative root
is found, it can be eliminated by deflation so that a second iteration
can be attempted. Also, if the iteration is diverging the sign of the

control bound can be reversed and the procedure repeated.




oo

4. Once the switching time has been found, we integrate equations

(3.16) backwards from t, to determine the costate vector in the
saturated region [O,t]]. We then integrate equation (3.13) forward
from t; and use (3.14), (3.11), and the second of (3.9) to determine
the solution in the unsaturated region. During the integration, we

check that the appropriate bounds on p, are not exceeded.

5. Finally, calculate the cost by integrating (1.2) using the trapezoidal

rule.

4. TWO MORE DIFFICULT PROBLEMS

a. Sirisena (1970) considered the Case 1 problem

L
Xy = X x](O) =2
(4.1) { Xp = U, x2(0) =0
i’ 2o
J = 5{ [lxq + x5)° + €%u1dt, [ul <1
0

\

for € = 0. If we, instead, determine the asymptotic solution as € -~ 0 as in

Section 3, we determine the switching time

t, =/5-1=1.236 (for T > t1)

1

where the control changes from u = -1 to the singular arc. Specifically, the
limiting control is
‘(t"t] )
u = tye for ty < t<T

and the corresponding limiting cost is

J= 715-(25/5 - 41) ~ 0.993447.
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This control would seem to compare favorably to Sirisena's bang-bang solution
for the fixed endpoint probiem with x(T) = 0, achieved with an inftinite
number of switchings with first switching point 1.227 and cost 0.993455. If
we take our constraint seriously, however, we must rule out this control since
u(t;) = /5 - 1 exceeds the bound u =1, (see Figure 3).

Our nearly good solution suggests that we might instead seek a solution
where the control switchés from u = -1 on some interval 0 < t < ty to
u=1 on ty < t< t2 after which u follows a singular arc. An unsaturated
control must be constructed to smoothly switch from -1 to 1 near t.l (i.e.,

¢ to —62). This type of interior (or transition) layer differs

from Py = €
somewhat from our earlier boundary layers because the desired limits occur for
finite negative and positive values, -n_ and N of the appropriate stretched
variable n = (t - t])/EZ, not for n = +=. Moreover, the Timiting solution is
unrelated to a singular arc. For these reasons, the local behavior is determined
by a regular perturbation procedure on (—n_,n+), although the solution will
sti11 exhibit singular perturbation features (i.e., nonuniform convergence)
because the t interval corresponding to (—n_,n+) vanishes as € » 0. As
before, the boundary layer at t2 is studied by a singular perturbation analysis

which allows the control to switch from its constraint set to a singular arc.

For (4.1), the canonical equations are

alr L X2

> o
e
]

(4.2)

et Ban O et Bl a5,

On 0<tc«< t;, then, the solution is




(x):x5,0) = (2 - %tz,—t,—l).

For -€24 <t-t §_€2n+, we have u = —p2/€2 and Pz(t];ézﬂx) - + €2,

pz(t]) = 0. Moreover, we'd locally obtain Xys X5 Pps and P, as power
series in € with Xps X and Py having nearly the constant values

x](t{), xz(t{), and pz(t{). Since the limiting value of p, Jumps sym-
metrically from -n_ to n,s We have n_-=n = ([x](t{) + x2(t{) + p](t{)[)"1,
provided the denominator is nonzero. Proceding to t; <t«< tz, we must have

the 1imiting solution
s E - + +\2 - +
(x] ,Xzau) @ (X](t]) + Xz(t])(t = t]) + (t = t]) 72, Xz(t]) + L t] ,1)

and pz(té) -2 - p2(t;). For t > tys we'll have u==;p2/€2 and (4.2) implies
that the 1imiting solution (XIO’XZO’PIO’EZPZO) must satisfy the Timiting

singular arc problem

(’?10 = X50° X10(t2) = x;(t;)

Xp0 = ~Pag> Xo0(t2) = xp(t5)
< Pio = 10 = %go» PyglT) = 0
el | Ball, " Nl L

Thus, X20= -X]0 - P]O‘ on = 'iZO = ’R]O’ and there remains the two point

problem X10 = X0 - P]O, P]0 = P]o, X]O(tz) = x](tz), P10(T) = 0. Hence,

we follow the singular arc

e e e e o




(X]O(t) = xp(t5)e

(6.3)
1P1o(t)

far. € > t2. In order for the control to remain unsaturated there, we must have

20 = P20 © %10

]
(o]
><

[X](té)l < 1.

Lastly, we obtain p] and Py for. t < 'c2 by integrating the costate equations
of (4.2) backwards with the limiting boundary values p](té) = 0, Pz(té) = .
Since X3 and X, are defined differently for 0 < t < t and ty<tet,,
we also have different expressions for P and P, on these intervals. Our
solution is now completely determined up to specification of the switching times
Y and t2’ 0 < 4 < tz.

The switching times follow from the two scalar equations

x,(ty) = Xz(t;)
(4.4) and
pz(t]) =0

which reduce to
l(t)2+(1-t)At+(2-t——t)=0
e 1 1 T 2%
and
1 Jial Z ol ioe il sl

for positive &t = t2 - t]. Solving these equations simultaneously we obtain

tl = 1.227 and t, = 1.564 and a resulting cost 0.993455. We further check

2
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that P, has no root other than t; on 0 <t < t, and that lpz(t;)]

= |x](t£)[ < 1. Ve note that these results (shown in Figure 4) are in
agreement with those of Sirisena (1970), who needed an infinite number of
switchings. Presumably, an analogous procedure could be used for other Case 1
problems requiring a finite number of switchings.

b. Jacobson et al. (1970) considered the Case 2 problem

|
o

X = X, x](O) -

(4.5) X, = U, x,(0)

1]
P

—r

5
Lage) = %fo(xf +2ul)dt, u] <

\

with € = 0. Since the simplest Case 1 solutions involve a control which

switches from being saturated to Tying on a singular arc, we might attempt to Vind
Case 2 solutions which switch once between the two control bounds and then follow
the singular arc. (For this problem, it will be impossible to find a control
which switches directly from its bound to the singular arc.) Noting that the
unconstrained problem has a large negative initial control as € > 0 (cf.
0'Malley and Jameson (1976)), we seek a solution such that u = -1 for 0 < t

< t], u=1 for t] ¢ £ < t2, and u = -p2/e2 for t near t] and for

t, < t< 5. On (tz,S), the 1imiting solution (x]o,xzo,p]o,pzo) will

satisfy the 1imiting canonical system

(4.6) x10 = Xp0° 0 “pyp0 P1g = Xqp> @nd ppg = -Pyps

i.e., it will follow the trivial second order singular arc. Integrating the

state equations (4.5), we obtain

iaian
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{x -~ %tz,] - t) for 0<t<t

"

and

(x75%p) = (x7(]) + xp(£])(t-t)) + Ht-£)%, x,(1]) * (t-t;)) for &) <t < t,.

As for the preceding problem the transition layer at t] and the boundary layer

at t2 will allow discontinuities in u, but not in the states Xq and X
7y = 3 5 = b = i =
Thus we must have xi(t]) xi(t]) and Xi(tz) = Xio(tz) 8, 1=1%, 2.

These conditions imply that
Ve

(4.7) ty Vx5 and ¢

5 =1+ /2.

2

The resulting solution (see Figure 5) compares very favorably to that of Jacobson

et al; the cost being 0.269 compared to their value 0.277.

'fs Regrettably, however, the control just computed is suboptimal. It does remain ' 7
g
] % unsaturated on (t2,5), but the costate vector must satisfy the 1imiting terminal
s
E ¢ value problem
| Py = Xps Plty) = 0 |
| 8 (4.8) |
|
: Py * Pys Pyllp) = 0 |
g for t < tz.' Since Xq > 0 within (O,tz), : and p, are also positive i
| b

[ there, so we can't achieve the optimality condition pz(t]) = 0. (Our algorithm

yields pz(t;) = 0.0104). This closure problem occurs because our switching
requirements completely determine the state, costate, and switching times. The

additional optimality condition is an extra constraint without a corresponding

degree of freedom.
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It should be realized that the optimal control for this problem presumably
involves an infinite number of switchings which accumulate at a point after
which the control follows a singular arc (cf. Fuller (1963), Grensted and
Fuller (1965), and Marchal (1973)), although fewer switchings may be possible
for special initial values. Our suboptimal results seem very good, however.
They relate to Sirisena's concept of an optimal r-switch solution (cf. Sirisena
(1970)).

A related Case 2 example with a trivial singular arc requiring an infinite

number of switchings is

ped
|
b3
~N
-
>
-
—
(@)
~
I
N

—r

4
1.2
kJ 3 ?Jox]dt’ lul <

(cf. Marchal (1973)). When we try to calculate a one switch solution starting

at u = -1, we get t] =2y At = t2 5 N 0, and cost 1.6. The optimal
solution has u =1 wuntil t = 0.057, switches to u = -1 until about t = 2.6,
and then has an infinite number of switchings accumulating at t = 3.43 after
which u = 0. The optimal cost is 1.52. Our suboptimal solution is presumably
not as good as for the preceding problem where we were able to switch once before

meeting the singular arc.

5. COMMENTS ON HIGHER ORDER SINGULAR ARCS
Experts (cf. e.g., Krener (1976)) feel that infinite switching is generic
for problems with singular arcs of order p, p > 2, although finite switching

may be possible for special initial conditions. Our preceding discussion supports
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this opinion. For such problems, we can readily identify the appropriate form of
singular arc solution through our singular perturbation analysis, and can
generally find a suboptimal p - 1 switch solution converging to the singular

arc. Suboptimal solutions with more switchings (a la Sirisena) might also be
sought.

Specifically, for Case 2, we have
b'Qb = 0 and b'A'QAb > 0.

The problem can be transformed so that

0 Al 22 O Qqp 932 O 4
(5.1) b=10, A= aé] 259 1 |, and Q = qiz 9y 0 i
1 aé] a32 2,4 0 0 0

P

where A]] and Q]] are matrices of dimension (n - 2) x (n - 2) and oo is a

positive scalar (cf. 0'Malley and Jameson (1976)). Introducing corresponding

state and costate vectors

the scalar optimal control either lies on its bound |u|] =m or else u = —p3/€2.

On the singular arc, the control should be unsaturated and the canonical

system has the form
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o B ;

Xg = ap1Xp ¥ ay%y + Xg f

2 Soman :

Xg = € (agyxy + agpXy + a339%3) - Py !

(5.2) Py = -Qpy%y - g%y - A'yyPy - 351Pp - 35yP; E

4 Be = "T%s T Y9273 21oP) T Bogbe - B3Py :
F b

R e B !

Seeking a singular arc solution of the form

= 2 2
(53) (X],XZ,X3,P1,P2,P3) ~7 (X]’X23X3:p] ae PZ’E P3)

(s Gty s - 4 4 »
SN SRS SR

where the Xi‘s and Pi's have asymptotic series expansions in V&€, the leading

terms will satisfy

’i1o = MiYe * Y2le0
Xa0 = 337X10 * 2pp%p0 + a0
K3 = a3¥1g + 23p¥pq * %3330 ~ P30
7' P10 = “Q1k10 - F12%a0 - MiPo
0 = -910%y0 - 952%0 - 232F10
| \530 = =Py = RagPap

so we must have
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( ']n "]|
20 = "922%12%70 ~ 922212P10

X.. = X

30 - %20 = ¥

X

10~ P2sPep '
(5.4) P3p = 231Xy + 239%pp * 333X30 - X3g
and
50 ™ s~ Tap

and there remains the linear 2(n - 2) -dimensional problem

L '] ] '] (]
10 = (A11 = 212922912)%10 = 21292212P10
(5.5) J

167 (0 = 95928320 - (A = 9y585581,)P1

analogous to (3.10). Since Q> 0 and 95, > 0 imply that Qq - q]zqglqiz > B,
standard results imply that the two point problem with X]O(%) prescribed and
P}O(T) = 0 will have a unigue solution on any interval [¥,7]. Thus, the
singular arc solution with control u =~ -P30 can be easily computed on any

such interval provided the state x](¥°) is known from the initial trajectory

[O,%) with bang-bang control. 1In particular, Case 2 problems converge to

the trivial singular arc solution when n = 2. The Case 2 problem

Q] = Xps X T X3, X3 = U, x](O) =1, xz(o) = 0, x3(0) =0

B L e e o e i

3 e
J =3 0(x1 + x2) dt, jul <1

will, for example, have a nontrivial singular arc (cf. Sirisena (1970)).

We can analegously determine the singular arcs appropriate for Case p
problems, p > 2. For example, we find the trivial singular arc for the Case

3 problem
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5
J = %J x%dt, ju <1
0

(cf. Grensted and Fuller (1965) and Sirisena (1974)). The optimal solution
switches infinite]y often before landing on the singular arc and has an optimum
cost 1.2521. OQur simplest suboptimal solution switches at t] ~ 794 and

3t] and reaches the singular arc at 4t] with a cost of 1.2665.
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